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The effective tensors of elastic moduli and pliability were calculated by renormalizing the equations of
equilibrium and incompatibility. All multiphase interactions were taken into consideration, but the
calculation was done approximately by using only the singular parts of derivatives of Green's functions,
which is equivalent to the assumption of uniformity of the random components of stress and strain fields
within grain boundaries. Solutions derived by two methods are reconciled, making it possible to determine
the position of the elastic moduli of shear and of bulk K between the Hashin~Shtrikman bounds. Particular
cases in which only the bulk modulus is not uniform, as well as those of composite materials with all of
their constituents having the same ratio K = 44/3 are considered.

Deformation of inhomogeneous solid bodies is accompanied by the appearance in the material of an elastic field
whose random component is not generally uniform within the boundaries of a grain. Hence, the relationship between
the random and the regular components of the field is nonlocal and is defined by a certain set of integral operators.
This nonlocalization considerably complicates the problem of calculating the effective elastic constants and the
multipoint moments of the elastic field. Only in certain particular cases a quasi-uniform deformation produces a
uniform elastic field within the boundaries of a grain. This occurs with respect to the bulk component of the elastic
field of a material for which only the bulk modulus is nonuniform [1] and, also, when laminated structures are subject
to strain [2]. The limited number of models of solid media with uniform stresses and strains within the boundariesg of
a grain has led to the development of approximate methods of computation of elastic moduli and of correlation
functions for the elastic field, such as the method of self-consistency [3, 4], the theory of random functions [1, 2, 5~10],
and others.

Although the renormalization of equations of equilibrium and of incompatibility permit in principle an exact
determination of effective moduli of elasticity, the mathematical difficulties arising from the presence of nonlocal
bonds make it impossible to advance beyond the third approximation [7]. If, however, an approximation to localization
is made, it becomes possible to sum all terms of the series. Summation of series in the framework of the
perturbations theory was first used in the calculation of elastic moduli by Bolotin and Moskalenko [11,12], who had
introduced for this purpose the concept of highly isotropic polycrystals. Kroner had used a similar approach in the
investigation of elastic properties of polycrystals [13].

The method of renormalization in an approximation to localization applicable to composite materials is
developed in the following. All multiphase interactions are taken into consideration in the calculation of the effective
moduli of elasticity, except that certain approximate expressions are substituted for the exact derivatives of the
Green's functions in the equations of equilibrium and incompatibility, which is equivalent to the transition within grain
boundaries from a nonuniform to a uniform field. The principle of reconciliation of solutions {3, 14] obtained by
various methods permits the determination of the bulk and shear moduli of elasticity within the Hashin-Shtrikman
bounds.

1. Let us express the random components of tensors of stress g;; and strain gij in terms of their regular values.
For an arbitrary inhomogeneous linear medium, generally containing sources of internal stresses, the equations of
equilibrium and of incompatibility may be, respectively, written as:

Lipy+ 1 = 0, Ly = TehinimVims Mnim = K8ibim + D s (L.1)
and
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Here y; is the translation vector, fi is the volume density of external forces, 7y is the incompatibility tensor, eijp is
a unit skew-symmetric tensor, Ajp 7y and Spqlm are the tensors of elastic moduli and of pliability, and K and u the
bulk and shear moduli, respectively.

By decomposing the operators and functions into their regular and random components it is possible to obtain
the following relationships:

u' = — (MyLpm® + 8im)tmd, (1.3)
Six = — (MirtmLimpg + 8is0gx) {Spa- (1.4
The operators M and I? are defined by the matrix equalities

IM+1=0 LW +1I=0, (1.5)

with the unit matrix I having 6ij as its elements in the case of second rank and 8j(pdqg)k In that of rank four. Random
and regular components are denoted, respectively, by primes and angle brackets. The averaging is carried out over
regions whose dimensions exceed the spatial correlation scale but are small in comparison with the distances over
which regular components of operators and functions vary substantially.

Introducing operators X and M°,
X =ML, (LM +1=0, (1.6)

we can express operators M and L° in the form

M=x"°, L[°= (L)Z(~—Z<X">)". (1.7)
0 4 1
Expanding the operational series we obtain
el
Z'=R(Zy, R=20,, (1.8
n—1 k-{-lsn—l1
Qn=X"— A X" "xH + D xXMFIEhHxh—. L (1.9)
k=1 k==L

Here Z is uy; or oij in matrix notation. The integral operator M° is defined by the regular Green's function {8)
M°f = G+f =\ G (r —p)/(p)dp. (1.10)

2. Let us apply the above method to the calculation of effective elastic moduli. Within a single grain the
transition from a nonuniform to a uniform field can be effected with only the singular parts of the derivatives of the
Green's functions taken into account. This makes it possible to reduce the operator expansion defined by formulas
(1.8) and (1.9) to a numerical one, which is equivalent to the approximation to local bond.

Let us first renormalize the equations of equilibrium, selecting operator (1.1) as L. From expression (1.8) we
then obtain

w' = R g, &5 = Hipr (entd. 2.1)
Here €1 = U(ij) is the strain tensor, and operators Hijkl and Rjj are bound by the obvious equality

Vil > = Higro <V yuy)- (2.2)

Let us confine our analysis to uniform macrostrains {gx;) = const. The second derivative of the Green's function
is [15]

Gijm = G o+ GE? W Gy — — %(&;jékz — g*éijkl)v
(f 1 |
GE = — T 12835 8y — 3ns) — 2 (Bupes — 3pusas + 15935001 (2.3)
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(3K +-p>
= @T_p./f;—) v O = 00 + 8505 + 8,8y,

Piinr = Oig¥ur + Sibij H0505 4 85 + Suis + 850
Yigir = mngmny, By = mng, ny=xrl. (2.4)

Here Gy and G, define, respectively, the singular and the formal parts of the derivative. The presence of
the co-factor 6(r) in the singular part of the derivative transforms the integral operator GS)M + into the constant tensor

{ ’ ’ ’
G Mimn = — (YKo 848 + Yabto' Dipn) = Jitmn »
- 3K’ ;. B KK 21>
K= BEFapy 0 W =5 p> BK F 4y ° (2.5)

Thus, the singular part G{y » defines localized bonds, while the formal derivative G{ ; «, which is an integral
operator, takes into account the deviation of strain within the bounGaries of a grain from its average value across the
latter. Hence, inthe approximation of local bond between components of the elastic field it is possible to disregard the

terms G” w #, and assume that Gj;  ~ Gl, K

Taking into account the relationships

Jispgd pqmr = /3K o"8;;01 1 Yalto 2 Dijma »
Ky —(Ky® = — Kok, g — > = — '),

3 (61— ¢2) (K1 — Ko)
GE 4y » 1

6 (c1—ca) (fa— o) <K + ZIL) (2.6)

§ 5¢p> (3K - 4p>

i
fl

from equalities (1.8), (1.9), (2.1), (2.2), (2.4), and (2.6) we obtain

&' = — (1/ s Ko’ DE%8i;00 + Yapto' Zn"Dijkl) Cem). (2.7)
1) 0

Expression (2.7) makes it possible to write in explicit form the expression for tenser H1 ki which defines the
relation between total stresses and strains at any arbitrary point of a material whose regular component of the gtress
tensor is

15 = igne + Him) Cepdy Loy = 850y,
— Higy = YsKo' (1 — &) 8:80 + Yo' (1 — ) Digryy 615 = Agguar <&, (2.8)
. ,
Ay = K(i - ﬁ) 830y -+ ll(1 - riln—) Dijp - (2.9)

Averaging expression (2.9), we obtain

A = Aymd = K*8;;8y + WDy,

¥ =<(K} — Dk (0K + Ky A+ @) (2.10)
P =<pd — Du(eipa + copy + )77,
k =<K%y, Dy =u'?, a = *4sp, b =Ye{p)9K + 8pd (K + 2p). (2.11)

)

Expression (2.3) shows that the averaging of the formal component of the Green's function over angles yields
zero. This makes it possible to obtain an approximation to localization by another method—that of disregarding the
angular relationships of the two-point mixed correlation functions of elastic moduli and of strains. Such an approach
[10] also yields relationships (2.11).

3. Let us now renormalize the incompatibility equation in the approximation of local bonds between field
components. Choosing operator (1.2) for L in (1.8), for the random component of the stress tensor we obtain

61 = Ry {Ops)- (3.1)

The operator Xl]kl in the expression of the random operator RleL may be written as
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X'ijkl = Gﬁ;)q * ROtpqrss;skl =
1 ' .
=~ s orre KD 8idn + a0 2P + @ Diel Sroa- (3.2)

Substituting here the explicit expression of the random component of the pliability tensor in accordance with
(1.2), we obtain

>

timt = — (M3Po'8:;0m1 + Y200’ Disur)s

’—-___311.._. ’:M_ 3.3
Po=@pry e T parto (3.3)

Only the singular parts of the derivatives of the Green's functions were taken into consideration in the
calculation of Xi'kl' The decrease of the Green's function at infinity and the operator relationship §(r)* = 1 were also
taken into account. Thus, the neglect of the formal components of the derivatives of the Green's functions results in
the degeneration of the integral operator Xijkl into a random tensor function, which is equivalent to a change within
grain boundaries from a nonuniform to a uniform elastic field.

Taking into account that the product of tensor functions Xijkl is

XiipaX part = HaPo"0i0k1 + /200" D iy - (3.4)
and that
(QnVig = — Y5po' 818500 — Y200 B Dijna » (3.5)
— 3(1—0) (;— p2) _3a—ce)n—a)pt+p 3.6
%= Bp 4o . B= 5B+ ) (3.6)

from equalities (1.8), (3.1), and (3.5) we find

— Rijpy = Yspo' (1 — )™ 8,505 + Yage" (1 — P) ™ Dijurs (3.7
o = Lim + Rim) <0uds €15 = Siyjm {Oni)s (3.8)
S = P(i — 1%) 8501 + 4(1 — %ﬁ) Diju. (3.9)

After averaging, we obtain from this the upper value of the elastic pliability tensor

St = (Sijmd = pOi;0m + gDy, {3.10)
w1 e e 3N
99 =) — Dusl g e+ G =5

s == [ (GG = -1

Here K! and ul are the lower values of the bulk and shear moduli, respectively.

Let us compare the derivation of the effective tensors of elastic moduli by the renormalization of the equations
of equilibrium and incompatibility. In the approximation of localized random fields it is possible to present both
solutions in the form of expansions. However, since af =0 and 8n = 0, one of these methods yields a fixed—sign and
the other an alternating expansion. Thus, when the concentration of the constituent of higher moduli of elasticity
exceeds that of the second constituent, the renormalization of the equilibrium equation results in an alternating
expansion, and § > 0 and n > 0. Otherwise a fixed-sign expansion is obtained when the incompatibility equations are
renormalized.

4. Formulas (2.11) and (3.11) provide approximate values of the effective bulk and shear moduli of elasticity.
The approximation of localized bond between the random and the regular components of the elastic field was used in
the derivation of both formulas. It follows from this that, in the case of an inhomogeneous material in which the
random stress and strain tensors are uniform within the boundaries of a grain, these formulas exactly define the
effective moduli of elasticity. Formulas (2.11) and (3.11) are also valid in the absence of localized bonds, provided
however, that the nature of the nonlocalized bonds is not affected when multiphase interactions are allowed for, i.e.,
when account for such interactions does not require the introduction of multipoint moments of elastic moduli. The
simplest model of this kind is that of a material whose bulk modulus only is nonuniform. Infact, from equalities
{1.8)—(1.10) and (2.1)—(2.4) we find that the random component of the strain tensor in first and second approximations
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are
E;%N) == Gij.jk * @(N) (8”) ’
1 3
Gigie ™= 3K Tapy |0 ) 8uk + Zm Gun—3u) |,
8M = K/, 8% = K'l — K' (K + 43 p>™3l. .1)

For a material with a nonuniform bulk modulus but with the same shear moduli of its phases, both formulas
(2.11) and (3.11) yield the same results [1, 16]:

K% —=<¢K _—DK____
=<K= 01Kz -+ caKy + ap’
1 1N o e | 3 \1 1
=& Pux (B + B ) = 4-2)

When both the K and the ¢ moduli are nonuniform, their bounds are, according to Hashin and Shtrikman [17],
‘defined by the following expressions:

CIK2+CZK1+ai ’ Hi‘_<u>_ C].bl,g—'—(;zpq—i—bi_ : ( * )

Ky =<K> —
Parameters a; and b, are defined by equalities (2.11) in which the elastic moduli of the first (subscript plus)
and of the second (subscript minus) constitutents are substituted for (K) and {(u) on the assumption that K, > K, and
{1 > Ho. Similarly, the Hashin values of K, and p, may be derived for pliability from formulas (3.11) by a
corresponding substitution in the correlation corrections to the first- and second-phase pliabilities for the mean
values {1/K) and {(1/u) of these,

It follows from the above that relationships (2.11) and (3.11) can also be obtained by the Hashin-Shtrikman method
by a formal substitution of (u) and 1/uy~ for uj. and similarly for K. It appears that in this case =< By~ b
This apparently was first pointed out by Aleksandrov [14] while analyzing the problem of narrowing the bounds of
elastic moduli of cubic polycrystals.

5. Depending on the relation between the parameters of a blend its true elastic moduli may lie either in the
middle of their bounds or close to the latter [18]. It is interesting, inthis context,to develop an algorithm which would
make it possible to indicate approximately the position of the elastic modulus within known bounds. For this we shall
require the coincidence of the two expressions (2.11) and (3.11). The necessary and sufficient condition for such
coincidence is for the second terms in formulas (2.11) and (3.11) to satisfy the following relationships:

(K = (K™, (py = <1/uy™ (5.1)

Relationships (5.1) are satisfied in two cases: when the elastic moduli coincide (it was this trivial case which was
used by Hashin and Shtrikman for establishing the bounds), and when the moduli are the effective and not the average
ones. Let us assume the latter, and substitute into the second terms of (2.11) and (3.11) the effective values of elastic
moduli for their mean values. We then obtain in the two cases the same formulas

K* = (K> — D (eKa + oKy + 45 p*)7,
* (OK* - 8pu*) -1
p* = (> — D, [01112 + cally + EG_((?*—J—@}:)—] . {5.2)

Relationships (5.2) represent a system of two equations in two unknowns, whose solution yields the sought
moduli of elasticity. It is readily seen that from the inequalities :

K <A/EIT < KF<KRY< Ky, <A/ < pr << (5.3)

follows

K<KE<SEK'<SK'<SK, p<p<p'<w<p,- (5.4)

Although K, K_, py, s have been determined for (K; — Ky (u; — pp) > 0, the bounds for K and p, determined by
formulas (2.11) and (3.11), are valid for any sign of the product of differences of moduli.
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As an example, let us consider a mechanical mixture whose every constituent is such that the relation K = 4pu /3
is satisfied. Inthiscase, equalities (5.2) reduce to a quadratic equation whose solution is of the form

K* = 8fqu* = Yoleg — ) (Ky — Kp) + [KiKy + Yy (eg — e (Ky — Kz)z}%- (5.5)

If ¢y = ¢y, expression (5.5) results in a geometric mean which coincides with the known empirical rule of
Lichtenacker [19, 20],

Ink* = ¢ InKy -+ ,In K, = MV KK, . {5.6)

Equalities (5.2) were derived with the use of the theory of random functions without, however, taking into account
the extent of the bond between constituents. Hence the obtained results must be applied with caution to matrix mixtures
in which one of the constituents occupies a simply connected region and the second a multiply connected one. Thig
applies, in particular, to porous media. Thus, putting K, =y, = 0, from Eqgs. (5.2) we obtain

822 + [3y(2 + ¢) + 4B—5c)lz + 91 — 2¢)y = 0,
=W N, =K e (5.7

and, also, the trivial roots p* = K* = 0, which indicates a possible breakdown of the material cohesion.

It will be seen from Eq. (5.7) that there are no positive roots when ¢ < 1/2, while for ¢; > 1 2 the equation
admits positive solutions. For example, for v = 4/3 we have x = 1 — 2¢,, which coincides with the results of
calculation by the method of virial expansion in the approximation to linear concentration.
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